

CarboScen

Analysis of carbon outcomes in landscape scenarios

Markku Kanninen 13.10.2022

My background

- Over quarter of century of international research on forests, land use and climate change
- Research and policy advice at various levels: national (Finland), regional (Europe, Central America) and global (CIFOR, IPCC, UNFCCC)
- Focus of this presentation:
 - Land use (AFOLU, LULUCF)
 - Global
 - Mitigation and adaptation
 - Climate-resilient sustainable development

Publications of	f the Academy of Finland	3/93	1993	
CARBO OF FORESTEL TOWAR ASS	arkku Kanninen (Ed.) ON BALAN WORLD'S D ECOSYST DS A GLOB SESSMENT	CE EMS: BAL	20:	18
	, midina, 11 10 may 1, 72		rennmental panel on C	ipcc Ilimate change 1.5°C
Painatus	Summary for Policymakers Technical Summary 5 Chapters	Chapter 1 - Framing a Chapter 2 - Mitigation compatible with 1.5 c context of sustainable Chapter 3 - Impacts of warming on natural a systems	and context n pathways ^o C in the e development of 1.5 °C global and human	Special Report on Global
	Frequently Asked Questions Boxes - Integrated case studies/regional and cross-cutting themes	Chapter 4 - Strengthe implementing the glo to the threat of clima Chapter 5 - Sustainab poverty eradication, a inequalities	ening and bal response te change ble development, and reducing	Warming of 1.5 °C

Cancun in Yucatan, Mexico 1979 and 2009

Disappearing glaciers

2003

2005

2011

2045

Urbanization

The Paraguay-Parana River before and after the construction of the Yacyreta Dam in 1985

Rondônia in western Brazil 1975 and 2009

Deforestation in Bolivia 1975 and 2003

How much carbon in a landscape in the future?

Future scenarios of landscapes

- REDD+ policy maker:
 - Policy options impacts in terms of emissions and sequestration
- Land-user planner:
 - Improving rural livelihoods carbon outcomes of different schemes
- Investment advisor:
 - Carbon outcomes of investment options

Example graph from Li et al. 2008

University of Helsinki

- What are we measuring?
 - Inputs, process, outputs, outcomes, impact
- Effectiveness (outcomes, impact)
 - The amount of emissions reduced or removals increased by REDD+ actions
- Approaches
 - An ex post evaluation of the effectiveness
 - Changes in forest carbon stocks (MRV) compared to a reference-level (business-as-usual baseline)
 - <u>An ex ante evaluation</u> of the effectiveness
 - Modeling and scenario-creation to analyze alternative futures ("carbon outcomes") based on different land use policies

How can forests mitigate climate change?

1) Avoiding losses of carbon stocks (reducing emissions)

3) Producing biomaterials and bioenergy through substitution

How to quantify ecosystem carbon when land-uses are known?

 $C_{tot} = D_c \times Area$

Carbon density per unit area (Mg C /ha)

University of Helsinki

Exam	ple 1	Example 2		
1 Ha		1 000 Ha		
1 x 100	100 Mg C /ha	1 000 x 50	50 000 Mg C /ha	
100 Mg C /ha		50 Mg C /ha		

How to quantify ecosystem carbon when VITRI land-uses are known?

• When carbon densities (D_c) of a given land use are known, just multiply these with the area to get the total carbon pool (C_{tot}): $C_{tot} = D_c \times Area$

But there are two additional points to consider

- First, land-use is changing constantly
- Second, carbon densities do not change suddenly when a land-use change happens

CarboScen tool Carbon analysis at landscape scale

CarboScen tool

- A tool for estimating carbon outcomes in landscapes
- Characteristics
 - Starting point: Unlimited number of land use classes
 - User inputs data on carbon pools (C densities) for each land use class (based on inventory, literature, default values, etc.)
 - User generates land use scenarios
 - The tool assumes that carbon density asymptotically approaches a equilibrium value, which is set for the land-use type in question (result of a global meta-analysis)
- Useful for estimating carbon outcomes (i.e. changes in carbon contents) of land use change scenarios
- Suitable for participatory planning and rapid *ex ante* assessment of carbon outcomes of REDD+ and other land use policies

Software available in CIFOR web site

https://www2.cifor.org/gcs/toolboxes/carboscen/

Paper published in Ecography (open access)

http://dx.doi.org/10.1111/ecog.02576

A tool to compute ecosystem carbon **CarboScen**

Adding or conserving ecosystem carbon can be an extremely cost-efficient way to mitigate climate change.

LEARN MORE

DOWNLOADS

land-use scenario

uses?

Download article

Define land-use classesPredict future land-use changes

Include uncertainty

CarboScen: a tool to estimate carbon implications of land-use scenarios

How much ecosystem

uses are changing?

carbon is there when land

by multiplying area with carbon density. But how can we calculate ecosystem carbon in dynamic landscapes where there are changes not only in land use, but also in carbon densities due to a legacy of past

Set carbon equilibrium densities (e.g. tons per hectare)
Input transition speeds based on local or global data

Use CarboScen to compute future ecosystem carbon for a simulated

When land uses are not changing, ecosystem carbon can be computed

Download CarboScen

University of Helsinki

Assumption: Carbon density approaches the new equilibrium at a rate, which is a fixed proportion of the remaining difference per unit time

Simplest case: two land-uses

University of Helsinki

CarboScen tool

Carbon analysis at landscape scale

CarboScen - steps

University of Helsinki

Carbon pools (stocks, reservoirs)

The five IPCC carbon pools:

(1) Aboveground biomass (AGB)
 (2) Belowground biomass (BGB)
 (3) Litter
 (4) Dead wood
 (5) Soil organic carbon (SOC)

(IPCC, GPG 2003)

University of Helsinki

Carbon stocks of forests

- Mg C/ha
- Tons of C/ha

Quiz

Which figure represents the simplified evolution of aboveground carbon stocks in the following cases?

Carbon density Non-forested land 6 Forest conversion to nonforested land use 5 (deforestation) Time Unsustainably managed 4 forest (forest degradation) Plantation established on non-1 forested land and harvested regularly Forest converted to a 3 6 plantation Conserved primary forest 2

Reference level and additionality in a reforestation of pasture lands

Total C stock (past and projected) in 300 000 ha forest area of Chiapas, Mexico

From where to get carbon density data?

Best option – local data

Additional data collection might be needed

Literature, global data banks

University of Helsinki

University of Helsinki

Carbon data base - example

Carbon data for the landscape

• User collects from carbon inventories, various projects, data bases, and literature

Carbon data - San Martin, Peru

Land use class	Biomass Carbon Density (Mg/ha)	Soil Carbon Density (Mg/ha)
Upper montane forest	157	76
Lower montane forest	149	59
Pre-montane forest	123	41
Palm forest in wetlands	99	57
Paramo (subalpine forest)	25	76
Mixed agriculture	20	20
Pasture	11	30
Rice cultivation	8	30
Coffee	11	30
Shaded coffee (agroforestry)	71	40

CarboScen user interface

Carbon stock & transition speed values

CarboScen 1.0.1

Start Settings Results						
Analysis time span 2020 - 2100 Ind Carbon densities at start same as the ed Carbon densities at start differ from the	lude uncertainties quilibrium values : equilibrium values			● Dy ○ Lin	namic landuse transition rate lear landuse transition rate	
	Forest				Cropland	
Land use class code	FOR				CROP	
Land area at the end of the first year	0.2				0.8	
Biomass carbon density at equilibrium	100.0				5.0	
Soil carbon density at equilibrium	50.0				30.0	
Biomass transition speed	0.03				0.5	
Soil carbon transition speed	0.05				0.1	
Land use transition matrix 1. Time span 2020 - 2050						
		From FOR				From CROP
To FOR 0.0			0.0	6		
To CROP 0.0			0.0			

CarboScen - steps

Parameter for the transition rate (rate of change) of carbon density is more challenging to obtain

Transition rate (parameter f): Is the proportion of the remaining difference between the current carbon density and the future equilibrium carbon density that happen annually

Global data needed for most landscapes

Accumulation of aboveground biomass with increasing stand age

Carbon density in a given land use at a given moment of time (p_c) can be calculated from:

$$p_{c} = p_{s} + (p_{e} - p_{s})(1 - e^{-ft})$$

where:

- p_s = initial carbon desity
- p_e = equilibrium carbon desity
- e = Euler's number
- *f* = parameter on transition rate
- *t* = time since the start of the period

Biomass data from 14 landscapes around the world

The transition rate (f) of soil carbon density is even more challenging

Table: Values of parameter f with standard deviations, coefficient of variation, and the number of chronosequences for each conversion type

	V			
Conversion type	f	SD	CV	n
Cropland to forest	0.056	0.067	120	7
Forest to cropland	0.073	0.055	75	71
Cropland to grassland	0.073	0.061	84	3
Grassland to cropland	0.151	0.149	99	3
Average/total	0.074	0.061	82	84

Soil organic carbon SOC (Mg ha⁻¹) after conversion

(Veldkamp, 1994)

University of Helsinki

Soil carbon pool after conversion - CarboScen

Rate of change of carbon density in biomas and in soil

Veldkamp (1994) data parametrized in CarboScen

Carbon pools after conversion - CarboScen

Existing data on soil carbon density transition rate is messy

Few data and high uncertainty

(Poeplau et al. 2011)

University of Helsinki

Carbon transition rates after land use changes have different time constants

Carbon stock loss after deforestation is much faster than C stock recovery in restoration and/or plantation

Example calculated with CarboScen tool Data: Poeplau et al. 2011

CarboScen tool

https://www.cifor.org/gcs/toolboxes/carboscen/

Larjavaara, M., Kanninen, M., Alam, S.A., Mäkinen, A., Poeplau, C. 2017. CarboScen: a tool to estimate carbon implications of landuse scenarios. Ecography 40, 894-900.

CarboScen - steps

University of Helsinki

CarboScen user interface

Land use transition matrix

٥ CarboScen 1.0.1 _ Start Settings Results Analysis time span 2020 - 2100 Include uncertainties Load... Save... Reset... Or Carbon densities at start same as the equilibrium values Oynamic landuse transition rate Carbon densities at start differ from the equilibrium values O Linear landuse transition rate 42 Forest Cropland Land use class code **FUR** CRUP 0.2 0.8 Land area at the end of the first year 5.0 Biomass carbon density at equilibrium 100.0 Soil carbon density at equilibrium 50.0 30.0 0.03 0.5 Biomass transition speed 0.05 0.1 Soil carbon transition speed Land use transition matrix 1. Time span 2020 - 2050 Сору Remove From FOR From CROP To FOR 0.0 0.06 To CROP 0.0 0.0 Land use transition matrix 2. Time span 2051 - 2100 Сору Remove From FOR From CROP To FOR 0.0 0.0 0.0 To CROP 0.0

University of Helsinki

Simplest case: two land-uses

Carbon simulations in participatory workshops

University of Helsinki

CarboScen – example 1

- Participatory multi/stakeholder workshops to develop divergent future land use scenarios
- 4 continents, 4 countries, 8 landscapes, and 8 workshops
- In each workshop: 4 groups were given a task to visualize on maps the future of the landscapes with changing drivers of land-use change

Study landscapes

VITRI

Mexico West (Chiapas)

Increasing carbon density of forested areas, and a significant afforestation of the area classified as 'Pasture and savannah'

Mexico East (Yucatan)

Carbon increase resulted mainly from increase in carbon density of already forested areas and from some afforestation

Peru North (San Martin)

Significant conversion of "coffee" to "eco-coffee" (coffee agroforestry)

Peru South (Madre de Dios)

Increase in the carbon density of forested land, but, additionally, noteworthy afforestation was predicted on agricultural land

Tanzania West (Iringa)

Coniferous tree plantations on various open land-uses

Tanzania East (Zanzibar)

Modest increase in ecosystem carbon could result from forest tree plantations replacing coral rag scrub

Indonesia West (West Kalimantan)

Anticipated changes conserved some of the peat from oxidization due to aerobic decomposition or from fire, by afforestation and rising water table levels

Indonesia East (Central Kalimantan)

Anticipated changes conserved some of the peat from oxidization due to aerobic decomposition or from fire, by afforestation and rising water table levels

Published in Environmental Research Letters (open access)

OP Publishing

Environ. Res. Lett. 12 (2017) 014015

doi:10.1088/1748-9326/aa5509

Environmental Research Letters

LETTER

OPEN ACCESS

RECENED 6 April 2016

REVISED

19 December 2016

ACCEPTED FOR PUBLICATION 21 December 2016

21 December 201

PUBLISHED

13 January 2017

Can conservation funding be left to carbon finance? Evidence from participatory future land use scenarios in Peru, Indonesia, Tanzania, and Mexico

Ashwin Ravikumar¹, Markku Larjavaara², Anne Larson³ and Markku Kanninen^{2,4}

- The Field Museum, 1400 S Lake Shore Dr., Chicago, IL, USA, 60605
- ² Department of Forest Sciences P.O. Box 27, Helsinki, Finland
- ³ Center for International Forestry Research, Avenida La Molina 1895, La Molina, Lima 12, Peru
- ⁴ Center for International Forestry Research, P.O. Box 0113, 16000 Bogor, Indonesia

Carbon data - San Martin, Peru

Land use class	Biomass Carbon Density (Mg/ha)	Soil Carbon Density (Mg/ha)
Upper montane forest	157	76
Lower montane forest	149	59
Pre-montane forest	123	41
Palm forest in wetlands	99	57
Paramo (subalpine forest)	25	76
Mixed agriculture	20	20
Pasture	11	30
Rice cultivation	8	30
Coffee	11	30
Shaded coffee (agroforestry)	71	40

Participatory workshop in Peru

Developing land use scenarios

Scenarios

Factor of change	Scenario 1	Scenario 2	Scenario 3	Scenario 4	
Natural phenomena and climate change					
Government policies and programs, and alignment between levels of governance					
Commodity prices					
REDD+					

	Factor of change	Scenario 1	Scenario 2	Scenario 3	Scenario 4
VITRI	Natural phenomena and climate change	Rain becomes more scarce and irregular	Rain becomes more scarce and irregular	Rain becomes more scarce and irregular	Rain becomes more scarce and irregular
larios	Government policies and programs, and alignment between levels of governance	Support for irrigated commercial agriculture	Integrated territorial (multi- sector) visión for land use	Support for adaptation measures and wáter management coordination among <i>ejidos</i>	Support for tourism and investment in industrial development in cities
Scen	Commodity prices	Commerical crop prices rise	Markets privilege organic and sustainably produced products	Commercial crop prices rise	All crop prices fall
	REDD+	REDD+ does not materialize	REDD+ materializes with the commitment of the national government to support conservation	REDD+ materializes as a strategy to support local forest management and governance	REDD+ materializes as a strategy to support local forest management and governance

	Factor of change	Scenario 1	Scenario 2	
ITRI	Natural phenomena and climate change	Rain becomes more scarce and irregular	Rain becomes more scarce and irregular	
arios	Government policies and programs, and alignment between levels of governance	Support for irrigated commercial agriculture	Integrated territorial (multi- sector) visión for land use	
Scen	Commodity prices	Commerical crop prices rise	Markets privilege organic and sustainably produced products	(
	REDD+	REDD+ does not materialize	REDD+ materializes with the commitment of the national	

Scenario 4 Scenario 3 Rain becomes more Rain becomes more scarce and irregular scarce and irregular Support for Support for tourism adaptation and investment in measures and water industrial development in cities management coordination among ejidos Commercial crop All crop prices fall prices rise **REDD+** materializes **REDD+** materializes as as a strategy to a strategy to support local forest support local forest management and management and government to governance governance support conservation

• Ĺ

U

Participatory scenarios

• What is going to happen in the future?

1211165

One land use scenario in San Martin, Peru: "Forest conservation and agroforestry coffee"

Scenario: Forest conservation and agroforest coffee

Total area of the landscape: 147 000 Has.

Comparison of four scenarios in San Martin, Peru

Madre de Dios, Peru

PACIFI

OCEAN

Total area of the landscape: 146 000 Has.

Viikki Tropical Resources Institute (VITRI)

Study area

Gold Mining Activities

Shrub and Bamboo Vegetation

Local carbon data, Madre de Dios

Land us class	Carbon density of above-ground biomass (Mg/ha)	Soil organic carbon density (Mg/ha)
Agriculture and cattle raching	45.3	35.0
Bodies of water	11.4	5.0
Mining	5.0	5.0
Flooded tropical forest	153.3	50.0
Tropical forest	168.3	50.0
Mountain forest	181.5	60.0
Secondary vegetation and bamboo	120.6	55.0

Participatory workshop in Peru

Developing land use scenarios

Four scenarios in Madre de Dios

Total area of the landscape: 146 000 Has.

Four scenarios in Madre de Dios

Total area of the landscape: 146 000 Has.

Forest carbon data sets

- Hett, C., Heinimann, A., Messerli, P. 2011. Spatial assessment of carbon stocks of living vegetation at the national level in Lao PDR. Danish Journal of Geography 111, 11-26. https://www.tandfonline.com/doi/abs/10.1080/00167223.2011.10669519
- IPCC. 2008. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Miwa K., Srivastava N. and Tanabe K. (eds). IGES, Japan. 21 p. <u>https://planning.lacity.org/eir/8150Sunset/References/4.E.%20Greenhouse%20Gas%20Emissions/GHG.27_IPCC%20National%20GHG%20Inventories.pdf</u>
- Rozendaal, D.M.A., Requena Suarez, D., De Sy, V., Avitabile, V., Carter, S., Adou Yao, C.Y., Alvarez-Davila, E., Anderson-Teixeira, K., Araujo-Murakami, A., Arroyo, L., Barca, B., Baker, T.R., Birigazzi, L., Bongers, F., Branthomme, A., Brienen, R.J.W., Carreiras, J.M.B., Cazzolla Gatti, R., Cook-Patton, S.C., Decuyper, M., DeVries, B., Espejo, A.B., Feldpausch, T.R., Fox, J., G P Gamarra, J., Griscom, B.W., Harris, N., Hérault, B., Honorio Coronado, E.N., Jonckheere, I., Konan, E., Leavitt, S.M., Lewis, S.L., Lindsell, J.A., N'Dja, J.K., N'Guessan, A.E., Marimon, B., Mitchard, E.T.A., Monteagudo, A., Morel, A., Pekkarinen, A., Phillips, O.L., Poorter, L., Qie, L., Rutishauser, E., Ryan, C.M., Santoro, M., Silayo, D.S., Sist, P., Slik, J.W.F., Sonké, B., Sullivan, M.J.P., Vaglio Laurin, G., Vilanova, E., Wang, M.M.H., Zahabu, E., Herold, M. 2022. Aboveground forest biomass varies across continents, ecological zones and successional stages: refined IPCC default values for tropical and subtropical forests. Environmental Research Letters 17, 014047. <u>https://iopscience.iop.org/article/10.1088/1748-9326/ac45b3</u>
- Sasaki, N., Asner, G.P., Pan, Y., Knorr, W., Durst, P.B., Ma, H.O., Abe, I., Lowe, A.J., Koh, L.P., Putz, F.E. 2016. Sustainable Management of Tropical Forests Can Reduce Carbon Emissions and Stabilize Timber Production. Frontiers in Environmental Science 4. <u>https://www.frontiersin.org/article/10.3389/fenvs.2016.00050</u>

Forest carbon data set from Rozendaal et al. 2022

Data for aboveground biomass carbon

Ecological zone	Continent	Successional stage	Mean AGB (Mg ha ⁻¹)	SD (Mg ha ⁻¹)	Median AGB (Mg ha ⁻¹)	Method	# plots	# grid cells	Ref
Tropical	Africa	OGE	404.2	120.4	_	Weighted	451	_	[1_12]
rainforest		OSF	212.9	143.1	141.6	Grid cell	97	9	[5-7, 11,
		YSF	52.8	35.6	56.3	Grid cell	83	9	13–16] [9–11, 14, 15,
	America	OGF	307.1	104.9	_	Weighted	487	_	[3, 4, 9, 10,
		OSF	206.4	30.4	203.3	Grid cell	328	26	[9, 10, 22-28]
		YSF	75.7	34.5	67.1	Grid cell	513	23	[9, 10, 14, 22,
Г	Asia	OGF	413.1	128.5	_	Weighted	192	-	[3, 4, 9, 10, 33–35]
		OSF	131.6	20.7	131.6	Grid cell	94	5	[9, 10, 36, 37
Tropical	-	YSF	45.6	20.6	50.6	Grid cell	88	7	[9, 10, 37-39
moist forest	лика	SF	72.8	36.4	64.2	Grid cell	7530	52	[9, 10, 16, 40-47]
101000	America	OGF	187.3	94.0	-	Weighted	106	-	[3, 4, 9, 10, 10–21]
		OSF	131.0	54.2	112.4	Grid cell	185	17	[9, 10, 22-26]
		YSF	55.7	28.7	44.7	Grid cell	353	17	[9, 10, 22, 23, 25, 26]
	Asia	All	67.7 ^a	93.4	31.9	Grid cell	322	36	[9, 10, 35,
Tropical dry forest	Africa	All	69.6	47.5	59.7	Grid cell	9410	47	[1, 2, 43, 44, 51–53]
	America	OGF OSF	127.5 118.9	72.6 81.3	121.1	Weighted Grid cell	12 72	6	[10-21] [9, 10, 22, 23,
		YSF	32.2	24.2	32.1	Grid cell	44	5	54] [9, 10, 22, 23, 54, 55]
Г	Asia	All	184.6 ^b	144.5	161.6	Grid cell	36	3	[9, 10, 35, 40
Tropical	Africa	All	48.4	45.8	37.2	Grid cell	2626	17	[44, 57, 58]
shrubland	America	All	71.5	46.4	62.5	AGB map	_	216	[59]
Tropical	Asia		38.3	33.0	27.1	Grid cell	2057	1458	[59]
montane forest	mina		170.0	151.2	210.7	onden	2007	10	42-44, 47, 53 60-60]
	America	OGF	195.0	95.6	_	Weighted	83	-	[3, 4, 9, 10, 18–21]
		OSF	184.4	111.0	177.7	Grid cell	21	8	[9, 10, 22, 23, 26, 69]
		YSF	75.9	51.1	74.9	Grid cell	114	8	[9, 10, 22, 23, 26, 69, 70]
	Asia	OGF	433.5°	147.5	_	Weighted	23	-	[3, 4, 9, 10, 3
		SF	66.4	61.0	48.5	Grid cell	329	19	[9, 10, 50,
Subtropical humid	Africa America	All All	54.1 84.5	20.6 42.9	52.4 91.5	AGB map AGB map	_	203 3986	[59] [59]
forest	Asia	OGF	323.0	157.7	281.3	Grid cell	29	11	[9, 10]
Subtropical	Africa	All	65.2	27.1	60.2	A(FB man		650	[5, 10]
dry forests	America	All	115.9	46.2	110.3	AGB map	Ξ.	330	[59]
	Asia	All	70.9	26.2	75.6	AGB map	_	223	[59]
Subtropical	Africa	All	50.5	23.9	47.0	AGB map	_	147	[59]
steppe	America	All	44.0	20.0	39.8	AGB map	_	400	[59]
Subtropical	Africa	All	35.1	22.2	26.8	AGB map	_	681	[59]
montane	America	All	74.6	40.1	64.6	AGB map	_	1835	[59]
forest	Asia	OGF	250.2	59.4	247.5	Grid cell	115	17	[9, 10]
		5F	155.2	41.7	100.5	Grid cell	32	14	[9, 10]

The IPCC refers to montane forests

as 'mountain systems'; old-growth forests are included as 'primary' forests (IPCC 2019). YSF: young secondary forest (\leq 20 years old); OSF: older secondary forest (>20 years old); SF: all secondary forests; OGF: old-growth forest; All: all successional stages.

University of Helsinki

Carbon data – Nambak, Laos

Land use class	Biomass Carbon Density (Mg/ha)	Soil Carbon Density (Mg/ha)
Agriculture	10	80
Fallow	24	110
Logged forest	76	113
Pristine forest	161	95
Tree plantation	50	72

Hett e t al. 2011, Larjavaara et al. 2019

University of Helsinki

Carbon data – Thailand

Land use class	Biomass Carbon Density (Mg/ha)	Soil Carbon Density (Mg/ha)
Agriculture – coconut-cassava	100	30(*)
Agriculture – paddy rice	9	30(*)
Rubber plantation	70-90	60-160
Eculayptus plantation	60	30-70(*)
Home garden	140	30(*)

(*) Average "best guess"

Gnanavelrajah et al. 2008, Nizami et al. 2014, van Straaten et al. 2015

University of Helsinki

Thank you

markku.kanninen@helsinki.fi

CarboScen papers

- Larjavaara, M., Kanninen, M., Alam, S.A., Mäkinen, A., Poeplau, C. 2017. CarboScen: a tool to estimate carbon implications of land-use scenarios. Ecography 40, 894-900.
- Larjavaara, M., Kanninen, M., Gordillo, H., Koskinen, J., Kukkonen, M., Käyhkö, N., Larson, A.M., Wunder, S. 2018. Global variation in the cost of increasing ecosystem carbon. Nature Climate Change 8, 38-42.
- Ravikumar, A., Larjavaara, M., Larson, A., Kanninen, M. 2017. Can conservation funding be left to carbon finance? Evidence from participatory future land use scenarios in Peru, Indonesia, Tanzania, and Mexico. Environmental Research Letters 12(1).