

CMU No ____/.....

Place, Date __15__/_12_/_2022___

Course Syllabus

1 Program

Title of the study programme: Biology (BSc program)

2 Course details

Course name:	Restoration Ecolo	ву
Course code:	202484	
Number of credits (ho	ours/week):	3 credits (2 hours per week of lectures and 3 hours per week of labs)
Course type (tick the explain:	appropriate box):	\Box Required, $oxtimes$ Elective, \Box Other, if other please
Prerequisites courses	: Ecc	blogy (202371)

Semester, in which the course is taught:

Yea	ar 1	Yea	ar 2	Yea	ar 3	Yea	ar 4
Semester 1	Semester 2	Semester 1	Semester 2	Semester 1	Semester 2	Semester 1	Semester 2
					\boxtimes		\boxtimes

3 Responsible unit

3.1 Department: Biology

Names and affiliations of lecturer(s): All staff members of Biology Department, Science, Faculty CMU

1) Stephen Elliott

2) Dia Panitnard Shannon

3) Pimonrat Tiansawat

4) Prasit Wangpakapattanawong

4 Course description

This course addresses the problem of tropical deforestation and the need to restore tropical forest ecosystems for biodiversity conservation, environmental protection and to support rural livelihoods. It is aimed at undergraduates to stimulate interest in applied ecology and conservation. The course presents the fundamental principles of restoration ecology, focusing on the concept of ecological succession, the effects of anthropogenic disturbance on forest regeneration and broad strategies to catalyze recovery of tropical forest ecosystems in response to various levels of degradation. Students are introduced to basic restoration techniques, including planting stock production, tree planting, maintenance and monitoring. The success/failure of such techniques are illustrated by case studies, before considering broader issues, such as links between restoration and climate change and the socio-economic impacts of restoration. Lectures are complemented with labs and field trips, as essential course components.

5 Course objectives

Knowledge: ecological restoration principles, tropical forest ecological succession, global implications of restoration

Skills: analyze how natural and anthropogenic disturbances affect the potential for regeneration and how to select appropriate restoration approaches; how to grow planting stock. how to plant trees, perform direct seeding and maintain and monitor tree performance and biodiversity recovery—by both conventional methods and by using drones.

Application of theories to practice: use fundamental ecological principles to evaluate and compare an array of tropical forest restoration methodologies responding to biophysical and socioeconomic conditions.

Social knowledge and skills: understand the drivers of deforestation and incentives for forest ecosystem restoration, socio-economic, political implications both local and global.

5.1 Learning objectives of particular modules

If the course is divided into sections or modules, please state the learning objectives for the specific sections/modules taught within the course

6 Course teaching methods

6.1 Lectures – PPT, interactive discussions, follow-up home exercises

6.2 Labs – hands-on data collection, hands-on skills learning, computer lab data analysis and observational trips

7 Teaching plan

Lectures	

Week	Content	Method/activity	Hours
1	History and fundamental concepts of	Lecture	2
	ecological restoration - reference		
	systems and the move towards		
	international standards		
2	Forest ecosystem succession —	Lecture	2
	successional guilds, seed dispersal and		
	reproductive forest dynamics		
3	The effects of natural and	Lecture. Home	2
	anthropogenic disturbance on forest	assignment: online forest	
	regeneration—arrested succession,	change tracking (Global	
	novel ecosystems	Forest Watch)	
4	Strategies to catalyze forest	Lecture Home assignment:	2
	regeneration in the tropics - active and	preset reading for Tutorial	
	passive forms of restoration along a	1.	
	spectrum of degradation/deforestation		
5	Tutorial 1: discussion of preset	Interactive group	2
	reading—forest degradation and	discussion	
	restoration approaches		
6	Restoration planning, costing and	Lecture	2
	design - stakeholder engagement, FLR,		
	corridors and nuclei etc.		
7	Restoration and biological invasions	Lecture. Home	2
		assignment: online	
	Mid-term exam	invasive plant recognition	
8	Propagating planting stock—seed	Lecture	2
	collection/banking and principles of		
	tree-nursery planning and management		
9	Practical implementation —rapid site	Lecture	2
	surveys, tree planting and maintenance,		
	direct seeding—use of drones		
10	Monitoring and evaluation - ground and	Lecture. Home	2
	drone surveys of biomass and carbon	assignment: preset	
	accumulation and biodiversity recovery.	reading for Tutorial 2	
11	Tutorial 2: discussion of preset	Interactive group	2
	reading—towards international	discussion	
	standards for assessing the impact of		
	forest restoration		

Week	Content	Method/activity	Hours
12	Restoration case studies - examples of	Lecture	2
	successful and unsuccessful restoration		
	projects; interactions with tourism.		
13	How global-climate change affects	Lecture	2
	restoration strategies and how		
	restoration contributes towards its		
	mitigation.		
14	Socio-economic and political aspects of	Lecture. Home	2
	restoration—monetizing forest values	assignment: preset	
	to incentivize restoration; governance	reading for Tutorial 3	
	and long-term financing. Impact on		
	traditions and culture. The role of		
	demographics.		
15	Tutorial 3: discussion of preset	Interactive group	2
	reading—legal, social, policy and	discussion	
	economic implications of forest		
	ecosystem restoration.		

Labs

Week	Content	Method/activity	Hours
1-2	Seed collection	Hands-on seed collection	6
		techniques in natural	
		forest	
3	Seed banking	Hands-on seed banking	3
		skills at CMU seed bank.	
		Lab report : seed supply	
		for restoration	
4	Tree nursery — basic horticultural skills:	Hands-on skills learning in	3
	seed banking & germination and	a tree nursery	
	seedling morphology, potting & care.		
5-6	Collaborative rapid site assessment	Hands-on skills learning in	6
	(RSA)	restoration site. Lab	
		report: write up results of	
		RSA	
7-8	The outcome of tropical forest	Observational - at	6
	ecosystem restoration along a	restoration field trial plot	
	chronosequence	system	
9-10	Strategies and best practices for mine	Observational - at open	6
	rehabilitation	cast mine	
11-12	Monitoring performance of trees	Hands-on skills learning in	6
	planted for forest restoration	restoration site. Lab	

		report : write up	
		monitoring results	
13-14	Using drones to monitor the results of	Hands-on skills learning at	6
	forest restoration - drone piloting and	mature restoration site	
	image acquisition		
15	Using drones to monitor restoration	Computer lab data	3
	results - image process, 3D modelling	analysis. Lab report : use of	
	and tree measuring	drones for forest	
		restoration	

8 Material needs

8.1 Course equipment:

Binoculars, GPS, drones, tablets and GIS software, tree measuring poles, caliper, field generator clinometer (most equipment has been provided by the FRAME project and is in the FORRU-CMU equipment store ready for use).

9 References

9.1 Compulsory reading list

General

- 1. Elliott, S.D., D. Blakesley and K. Hardwick, 2013. Restoring Tropical Forests: a practical guide. Royal Botanical Gardens, Kew.
- 2. SER International Science and Policy Working Group, 2004. The SER International Primer on Ecological Restoration. Society for Ecological Restoration International, Tucson, Arizona.
- Di Sacco, A., K.A. Hardwick, D. Blakesley, P.H.S. Brancalion, E. Breman, L.C. Rebola, S. Chomba, K. Dixon, S. Elliott, G. Ruyonga, K. Shaw, P. Smith, R.J. Smith and A. Antonelli, 2021. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Global Change Biology, 27: 1328-1348.

Pre-set reading for tutorials

 Chazdon, R.L., Falk, D.A., Banin, L.F., Wagner, M., J. Wilson, S., Grabowski, R.C. and Suding, K.N. (2022), The intervention continuum in restoration ecology: rethinking the active– passive dichotomy. Restor Ecol e13535. https://doi.org/10.1111/rec.13535

- Gann, G.D., McDonald, T., Walder, B., Aronson, J., Nelson, C.R., Jonson, J., Hallett, J.G., Eisenberg, C., Guariguata, M.R., Liu, J., Hua, F., Echeverría, C., Gonzales, E., Shaw, N., Decleer, K. and Dixon, K.W. (2019), International principles and standards for the practice of ecological restoration. Second edition. Restor Ecol, 27: S1-S46. https://doi.org/10.1111/rec.13035
- Elias, M., Kandel, M., Mansourian, S., Meinzen-Dick, R., Crossland, ...et al. (2022), Ten people-centered rules for socially sustainable ecosystem restoration. Restor Ecol, 30: e13574. https://doi.org/10.1111/rec.13574

9.2 Suggested reading list

- D'Antonio C.M. and J. Chambers, 2006. Using ecological theory to manage or restore ecosystems affected by invasive plant species. In Falk D., M. Palmer and J. Zedler (Eds.) Foundations of Restoration Ecology, Island Press, Covelo, California, 260–279.
- Elliott, S., 2020. Chapter 1 Forest restoration: concepts and its potential for automation. In Elliott S., G. Gale and M. Robertson (Eds.) Automated Forest Restoration: Could Robots Revive Rain Forests? Proceedings of a brain-storming workshop, Chiang Mai University, Chiang Mai, 1-27.
- Höhl, M., V. Ahimbisibwe, J.A. Stanturf, P. Elsasser, M. Kleine and A. Bolte, 2020. Forest Landscape Restoration – What Generates Failure and Success? Forests, 11(9): 938; doi:10.3390/f11090938
- 4) Laurance, W.F., 2015. Emerging threats to tropical forests. Annals of the Missouri Botanical Garden, 100: 159–169.
- 5) Shannon, D.P. and S. Elliott, 2020. Chapter 5 Developing aerial seeding by UAVs: lessons from direct seeding. In Elliott S., G. Gale and M. Robertson (Eds.) Automated Forest Restoration: Could Robots Revive Rain Forests? Proceedings of a brain-storming workshop, Chiang Mai University, Chiang Mai, 74-83.

10 Assessment of students

10.1 Description of assessment

- Midterm and final exams (25% each)
- Lab reports (4 x 10% each): seed supply, RSA and monitoring reports, and use of drones
- Contribution to interactive discussions (10%)

10.2 Grade distribution and student assessment

Grading scale

Grade		Tatalana	. .
Symbol	Verbal grade	Total score	Scale
А	Excellent		91-100
B+	Very good		81-90
В	Good		71-80
C+	Better than satisfactory		61-70
С	Satisfactory		51-60
D+	Less than satisfactory		46-50
D	Barely passing		41-45
F	Failing		<41

Place, Date/...../...../