

3D DATA ACQUISITION

FOR VIRTUAL REALITY

KAREL KUŽELKA

 \bigcirc

3D DATA ACQUISITION

PHOTOGRAMMETRY (SFM)

POINT POSITION CALCULATED FROM PARALAX BASED ON A SEQUENCE OF PHOTOS

+ CHEAP EQUIPMENT (any digital camera)

NECESSITY OF REFERENCING
ACCURACY DEPENDEND ON
USER SKILLS, IMAGE QUALITY...

LASER SCANNING (LIDAR)

POINT POSITIONS FROM RETURNS OF LIGHT PULSES

+ ACCURACY + SPEED - EXPENSIVE EQUIPMENT

RESULT

3D POINT CLOUD 3D MODEL

SFM/LIDAR OUTPUT

POINT CLOUD SET OF POINTS (XYZ) + COLOR

3D MODEL (POLYGONAL MESH) PLANES (triangulation)

+ TEXTURE

FOTOGRAMMETRIE

LASER SCANNING

LIDAR

TIME-OF-FLIGHT

TIME BETWEEN BEAM EMISSION AND RETURN

LONG-RANGE, FAST, EXPENSIVE, HEAVY

PHASE SHIFT

PHASE SHIFT BETWEEN EMITED AND RETURNED WAVE

Lidar

COUNT OF RETURNS

SINGLE RETURN MULTIRETURN FULL WAVE FORM

RANGE

METERS TO KILOMETERS

FREQUENCE UP TO 2 MHz

REFERENCING

POSITION & ORIENTATION

STATIONARY SCANNER

• KNOWN POSITION AND ORIENTATION

MOVING SCANNER

- GNSS (RTK OR PPK)
- IMU (INERCIAL MEASUREMENT UNIT)
 (TRAJECTORY BASED SOLUTION)

SLAM (SIMULTENEOUS LOCATION AND MAPPING)

ONLY MOVING SCANNERS (REAL TIME VS POST PROCESSING)

http://maps.tuzvo.sk/pointclouds/sk02_oak/index.html

SLAM: SIMULTANEOUS LOCATION AND MAPPING

PHOTOGRAMMETRY

PHOTOGRAMMETRY

STRUCTURE FROM MOTION TECHIQUE

STRUCTURE FROM MOTION

INPUT: A SEQUENCE OF IMAGES OF AN OBJECT FROM DIFFERENT POSITIONS

WORKFLOW:

- DETECTING IDENTICAL FEATURES IN IMAGES
- PARALAX MEASUREMENT, CALCULATION OF CAMERA 3D POSITIONS AND TIE POINTS POSITIONS CALCULATING 3D POSITIONS OF ALL DETECTABLE POINTS
- REFERENCING

REQUIREMENTS:

- SUFFICIENT NUMBER OF IMAGES
- SUFFICIENT OVERLAP
- GRADUAL CHANGE OF DIRECTION AND SCALE

DETECTING KEY POINTS

1999 SIFT (SCALE INVARIANT FEATURE TRANSFORM)

2006 SURF (SPEEDED UP ROBUST FEATURES)

KEY POINTS SELECTION -> TIE POINTS

1999 SIFT (SCALE INVARIANT FEATURE TRANSFORM)

SIMULATES NEURON BEHAVIOUR FOR EVAULATION OF VISUAL PERCEPTIONS

FEATURES – DISTINCT GROUPS OF PIXELS (CONTRAST)

SCALE INVARIANT – ROBUST AGAINST TRANSFORMATION (ROTATION 20°, RESP. 60°)

KEY POINT CLUSTERS – MAINTAINING RELATIVE POSITION

2006 SURF (SPEEDED UP ROBUST FEATURES)

MORE ROBUST AND FASTER

REFERENCING

- CONTROL POINTS
- GNSS POSITIONS (EXIF)
 - RTK/PPK POSITIONS
- SCALE BAR

REFERENCING

CONTROL POINTS

Agisoft Metashape: We recommend distributing the control points evenly over the survey object. It is also necessary that the markers are not located on one straight line

2

4

1

3

PHOTOGRAMMETRY

STRUCTURE FROM MOTION TECHIQUE

3D POINT CLOUD QUALITY

- OBJECT MATERIAL:
 - TEXTURE
 - REPEATED PATTERNS
 - REFLECTIONS (METAL, WATER)
 - MOTION (BRANCHES, LEAVES, WATER)
- CAMERA DIRECTION REFLECTIONS (POLARIZATION), CONTRAST
- LIGHT CONDITION DIFUSE LIGHT, CONSTANT LIGHT CONDITIONS (NO FLASH, NO LIGHTNING FROM CAMERA DIRECTION)
- GSD/RESOLUTION DISTANCE SENSOR- OBJECT
- ANGLE BETWEEN IMAGES
- COUNT OF OBSERVATIONS IMAGE OVERLAP

3D POINT CLOUD QUALITY

- OBJECT MATERIAL:
 - TEXTURE
 - REPEATED PATTERNS
 - REFLECTIONS (METAL, WATER)
 - MOTION (BRANCHES, LEAVES, WATER)
- CAMERA DIRECTION REFLECTIONS (POLARIZATION), CONTRAST
- LIGHT CONDITION DIFUSE LIGHT, CONSTANT LIGHT CONDITIONS (NO FLASH, NO LIGHTNING FROM CAMERA DIRECTION)
- GSD/RESOLUTION DISTANCE SENSOR- OBJECT
- ANGLE BETWEEN IMAGES
- COUNT OF OBSERVATIONS IMAGE OVERLAP

GSD – GROUND SAMPLE DISTANCE

Sanz-Ablanedo, E.; Chandler, J.H.; Rodríguez-Pérez, J.R.; Ordóñez, C. Accuracy of Unmanned Aerial Vehicle (UAV) and SfM Photogrammetry Survey as a Function of the Number and Location of Ground Control Points Used. *Remote Sens.* **2018**, *10*, 1606.

3D POINT CLOUD QUALITY

- OBJECT MATERIAL:
 - TEXTURE
 - REPEATED PATTERNS
 - REFLECTIONS (METAL, WATER)
 - MOTION (BRANCHES, LEAVES, WATER)
- CAMERA DIRECTION REFLECTIONS (POLARIZATION), CONTRAST
- LIGHT CONDITION DIFUSE LIGHT, CONSTANT LIGHT CONDITIONS (NO FLASH, NO LIGHTNING FROM CAMERA DIRECTION)
- GSD/RESOLUTION DISTANCE SENSOR- OBJECT
- ANGLE BETWEEN IMAGES
- COUNT OF OBSERVATIONS IMAGE OVERLAP

SCANN3D features how to use made with Scann3D follow us

smartmobilevisi

Capture the worth into Your Pocket

Move around your object and take pictures when the indicators are green.

3D POINT CLOUD QUALITY

- OBJECT MATERIAL:
 - TEXTURE
 - REPEATED PATTERNS
 - REFLECTIONS (METAL, WATER)
 - MOTION (BRANCHES, LEAVES, WATER)
- CAMERA DIRECTION REFLECTIONS (POLARIZATION), CONTRAST
- LIGHT CONDITION DIFUSE LIGHT, CONSTANT LIGHT CONDITIONS (NO FLASH, NO LIGHTNING FROM CAMERA DIRECTION)
- GSD/RESOLUTION DISTANCE SENSOR- OBJECT
- ANGLE BETWEEN IMAGES
- COUNT OF OBSERVATIONS IMAGE OVERLAP

Agisoft Metashape:

In case of aerial photography the overlap requirement can be put in the following figures: 60% of side overlap + 80% of forward overlap. When making a survey over a forest, it is recommended to increase the overlap value to 80% and 90% respectively.

- POSSIBLE ALIGNMENT PROBLEMS

SYNTHETIC OVERLAP INDEX (SOI)

SUM IMAGED AREA / TOTAL AREA

Accuracy of 3D point reconstruction using SFM technique

Amount of cameras looking at the point

Surový, P.; Yoshimoto, A.; Panagiotidis, D. Accuracy of Reconstruction of the Tree Stem Surface Using Terrestrial Close-Range Photogrammetry. *Remote Sens.* **2016**, *8*, 123.

PHOTOGRAMMETRY

CONCLUSIONS & PRACTICAL TIPS

IMAGE GEOMETRY

STRONG PHOTOGRAMMETRIC NETWORK SHOULD HAVE TWO MAIN FEATURES:

- 1. HIGHLY REDUNDANT IMAGERY AND HENCE POTENTIALLY HIGHLY REDUNDANT MEASUREMENTS,
- 2. AND DIVERSITY IN CAMERA ROLL ANGLES, ARRANGED IN A STRONGLY CONVERGENT IMAGING CONFIGURATION. INTRODUCING OBLIQUE IMAGES IN A PERPENDICULAR DATASET ALLOWS LARGER ANGLES BETWEEN HOMOLOGOUS RAYS THAT MINIMIZE SYSTEMATIC ERRORS

Sanz-Ablanedo, E.; Chandler, J.H.; Rodríguez-Pérez, J.R.; Ordóñez, C. Accuracy of Unmanned Aerial Vehicle (UAV) and SfM Photogrammetry Survey as a Function of the Number and Location of Ground Control Points Used. *Remote Sens.* **2018**, *10*, 1606.

IMAGE GEOMETRY

- TRAJECTORY: CIRCULAR (MULTIPLE CONCENTRIC CIRCLES) VS. SERPENTINE
- CAMERA: LANSCAPE VS. PORTRAIT
- VERTICAL DIRECTION: SLIGHTLY DOWN (TERRAIN)
- SCALE CHANGE FACTOR: NOT MORE THAN 2
- ANGLE CHANGE: NOT MORE THAN 30 DEGREES; BETTER 5 TO 10 DEGREES

LIGHT CONDITIONS

- DIFFUSE LIGHT
- IF POSSIBLE AVOID HIGH CONTRAST (SUN IN THE IMAGE)

Exposure

REFERENCING

- CONTROL POINTS
- GNSS POSITIONS (EXIF)
 - RTK/PPK POSITIONS
- SCALE BAR

REFERENCOVÁNÍ

CONTROL POINTS

Agisoft Metashape: We recommend distributing the control points evenly over the survey object. It is also necessary that the markers are not located on one straight line

2

4

1

3

- 1220 ha (3 x 4 km)
- 2540 images

Sanz-Ablanedo, E.; Chandler, J.H.; Rodríguez-Pérez, J.R.; Ordóñez, C. Accuracy of Unmanned Aerial Vehicle (UAV) and SfM Photogrammetry Survey as a Function of the Number and Location of Ground Control Points Used. *Remote Sens.* **2018**, *10*, 1606.

Number of Control Points Used in the Bundle Adjustment

Number of Check Points

Number of Control Points Used in the Bundle Adjustment

PHOTOGRAMMETRY

STRUCTURE FROM MOTION TECHIQUE

TIE POINTS (ŘÍDKÉ BODOVÉ MRAČNO)

ACCURACY

GENERIC PRESELECTION REFERENCE PRESELECTION

🥁 Align Photos	×
▼ General	
Accuracy: Generic preselection Reference preselection Reset current alignment	Highest V Highest High Medium Low Lowest
- > Advanced	Cancel

KEY POINT LIMIT

KLÍČOVÉ BODY (KEY POINTS) ZAJÍMAVÉ BODY (FEATURES) IDENTIFIKOVANÉ V KAŽDÉM SNÍMKU

TIE POINT LIMIT

UZLOVÉ BODY (TIE POINTS) SPÁROVANÉ FEATURES VE DVOJICI SNÍMKŮ

LIMIT 0 = NENÍ OMEZENO

🖬 Align Photos		×	
▼ General			
Accuracy:	Highest	\sim	1 de la constante de la consta
Generic preselection			
Reference preselection	Source	\sim	
Reset current alignment			
▼ Advanced			
Key point limit:	40,000		\frown
Tie point limit:	4,000		<u> </u>
Apply masks to:	None	\sim	
Exclude stationary tie points			
Guided image matching			
Adaptive camera model fitting			
ОК	Cancel		
			-

TIE POINTS FILTERING

REPROJECTION ERROR

High reprojection error usually indicates poor localization accuracy of the corresponding point projections at the point matching step. It is also typical for false matches. Removing such points can improve accuracy of the subsequent optimization step.

(INCONSISTENT POINTS, ERRORS)

RECONSTRUCTION UNCERTAINITY

High reconstruction uncertainty is typical for points, reconstructed from nearby photos with small baseline. Such points can noticeably deviate from the object surface, introducing noise in the point cloud. While removal of such points should not affect the accuracy of optimization, it may be useful to remove them before building geometry in Point Cloud mode or for better visual appearance of the point cloud. (ERROR ELLIPSOID)

TIE POINTS FILTERING

IMAGE COUNT

Metashape reconstruct all the points that are visible at least on two photos. However, points that are visible only on two photos are likely to be located with poor accuracy. Image count filtering enables to remove such unreliable points from the cloud.

PROJECTION ERROR

This criterion allows to filter out points which projections were relatively poorer localized due to their bigger size.

OPTIMIZE CAMERAS

To ensure maximum geometric accuracy of processing results, it is important to always optimize cameras after adding or editing measured values and/or their accuracies, e.g. loading GPS camera coordinates, adding GCPs, changing accuracy settings

