

Institution name here	2	No	/	
		Place, Da	te 15/01/2022	
		Course Syl	labus	
1. Program				
Title of the study pro	gramme: A	Naster of Science	e Program in Forestry	,
2. Course details				
Course name:	Mapping Techno	ology in Forestry	/	
Course code:	01303522			
Number of credits (h	ours/week):	3 (2-3-6)		
Course type (tick the explain:	appropriate box)	: 🛛 🛛 Requir	red, \Box Elective, \Box Of	ther, if other please

Prerequisites courses:

Semester, in which the course is taught:

tick the appropriate box below

Year 1		Year 2	
Semester 1	Semester 2	Semester 1	Semester 2
\boxtimes			

3. Responsible unit

3.1. **Department:**

Names and affiliations of lecturer(s):

Mr. Theerapong Chumsangsri (Dept. of For. Eng.)

Asst.Prof.Wanchai Arunpraparat (Dept. of For. Eng.)

4. Course description

Topographic map, coordinate system, map projection, angle and direction, digital terrain model (DTM), geo-database, global navigation satellite system (GNSS), surveying and mapping techniques in forestry, retrieval system and management of maps.

5. Course objectives

At the end of the course, students are able to:

- Remember and understand principle of mapping technology in Forestry
- Create and manage maps
- Select tool and technology suit for their purpose

5.1. Learning objectives of particular modules

6. Course teaching methods

Online lecture, Exercise, Assignment, Discussion, Presentation, Case study

7. Teaching plan

Lecture

Week	Content	Method/activity	Hours
1	Principle, importance of mapping in forestry	Lecture Discussion	2
2, 3	Coordinate system, projection	Lecture Discussion	4
4, 5, 6	 Mapping technologies in forestry Surveying Geographic Information System (GIS) Remote sensing Global Navigation) Satellite 	Lecture Discussion	6

	System (GNSS) - Laser scanner Software		
7, 8	GIS and spatial data	Lecture Discussion	4
9,10	Terrain analysis	Lecture Discussion	4
11	Forest land use map	Lecture Discussion	2
12, 13	Spatial analysis and model	Lecture Discussion	4
14	Case study	Presentation	2
15	Case study	Presentation	2

Practice

Week	Content	Method/activity	Hours
1, 2, 3	Data input - Feature class - Edit - Topology	Demonstrate Practice Assignment	9
4	Register and projection	Demonstrate Practice Assignment	3
5, 6	Terrain analysis	Demonstrate Practice Assignment	6
7, 8	Network analysis	Demonstrate Practice Assignment	6
9	Overlay analysis	Demonstrate Practice Assignment	3

10,11	Techniques for creating forest land use maps	Demonstrate Practice Assignment	6
12, 13	Spatial data analysis with mathematical models	Demonstrate Practice Assignment	6
14	Case study	Assignment	3
15	Case study	Assignment	3

8. Material needs

8.1. Course equipment:

Computer or laptop and software (ArcGIS, QGIS, ERDAS-IMAGINE, FARO SCENE)

9. References

9.1. Compulsory reading list

Lemmens Mathias .2011 .Geo-Information :Technologies and The Environment .Springer :349p. Longley A .Paul, Goodchild F .Michael, Maguire J .David, and Rhind W .David .2015 .Geographic Information Science & Systems. Wiley .477p.

Faro. 2020. SCENE 2019 FARO Focus Laser Scanners Training Workbook. Faro. 338p.

9.2. Suggested reading list

10. Assessment of students

10.1. Description of assessment

The assessment is a combination of direct and indirect measures that include examination, selfstudy, presentation, exercise, assignment, and class participation during the entire course.

10.2. Grade distribution and student assessment

Examination	40%
Self study/presentation	20%
Exercise/assignment	30%
Class participatory	10%
Total	100%

Grading scale

Grade		Total score	Scale
Symbol	Verbal grade		
А	Excellent	>=80	4.0
В+	Very good	75-79	3.5
В	Good	70-74	3.0
C+	Fairly good	65-69	2.5
С	Fair	60-64	2.0
D+	Poor	55-59	1.5
D	Very poor	50-54	1.0
F	Fail	<50	0.0

Kasetsart University, Date 15/01/2022